# Longitudinal Multidimensional Item Response 

Modelling in Preschool Children's Mental State
Understanding

## MSc. Vilma Susana Romero Romero

VI Congreso Bayesiano de América Latina


Mathematics \& Statistics

## Lancaster 도옹 <br> University

## Theory of Mind (ToM)

## Definition

Ability to perceive our own mental states as well as from others, such as beliefs, desires and intentions and know that they differ from one person to another.

## Main Features

- Developed in the first years of life (4 years old).
- Understand social environment and how to interact in it.
- Mental state tasks to identify the acquisition of ToM.



## Aim

Understanding of mental states in children over the 3rd year of life through MIRT and analyze each dimension under the Bayesian Longitudinal approach.

## Data Description

## Participants

86 British children (Female $=41$, Male $=45$ ) from different preschools and day nurseries located in Northern Lancashire. Age: Between 30 and 33 months when recruited.

## Measures

8 mental state tasks (13 questions three times in intervals of 4 months). A correct response scored ' 1 ' and an incorrect response scored '0'.

- Standard Location Change
- Deceptive Box
- Pretence, Desire and Think
- Narrative
- Verbal and Non-Verbal (2 and 4 trials repectively)


## Exploratory Analysis

## Response Patterns



■ Only complete observations taken into account.

- Most difficult tasks: Standard Location Change and Deceptive Box.

Total Performance Trend


General trend is increasing

## Correlation Analysis




- Time 1 and 2 (Above) Time 3 (Below)
- Correlation across time.
- Correlation between possible latent factors.


## Multidimensional Item Response Modeling

The probability of answering a dichotomous item correctly is:

$$
\Phi\left(x_{i j}=1 \mid \theta_{i}, \alpha_{j}, d_{j}\right)=\frac{1}{1+\exp \left[-D\left(\alpha_{j}^{T} \theta_{i}+d_{j}\right)\right]}
$$

Where, $i=1, \ldots, N$ participants, $j=1, \ldots, n$ test items, m latent factors $\theta_{i}=\left(\theta_{i 1}, \ldots, \theta_{i m}\right)$ with associated item slopes $\alpha_{j}=\left(\alpha_{1}, \ldots, \alpha_{m}\right), d_{j}$ is the item intercept and D is a scaling adjustment (usually 1.702).

- The slopes are the multidimensional discrimination parameters (one for each latent factor).
- The intercept is proportional to the item difficulty.
- The higher (lower) the discrimination parameter, the (worst) better the item distinguishes low and high ability levels.


## MIRT as Item Factor Analysis



Bifactor Model Path

## Causality Analysis <br> First Stage: Bayesian Longitudinal Analysis

- Correlation Structure: Latent abilities on the same subject will be more correlated than among different subjects.
(1) Autoregressive $\operatorname{AR}(1)$

■ Constant variance across time.

- Correlation exponential decrease as the lag between times increases.

$$
\boldsymbol{\Sigma}_{\theta}=\sigma^{2}\left(\begin{array}{ccc}
1 & \rho & \rho^{2} \\
\rho & 1 & \rho \\
\rho^{2} & \rho & 1
\end{array}\right)
$$

(2) Unstructured Covariance: Not specific pattern
(3) Random Effects: $\theta_{i f t}=\gamma_{i f}^{(0)}+\gamma_{i f}^{(1)} t$

- 3 chains of 10000 iterations with a burn-in phase of 5000 and final results pooled in a single chain.
- Employment of a BUGS (Bayesian inference Using Gibbs Sampling) code called from the free software R.


## Prior Distributions

Choice of prior distributions for each $f$ latent dimension

| Parameters |  |  | AR(1) | Unstructured | Random Effects |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Discrimination Difficulty |  | $\begin{aligned} & \alpha_{j} \\ & d_{j} \\ & \hline \end{aligned}$ | $\begin{gathered} \mathrm{N}(1,1) \mathrm{I}\left[\alpha_{j}>0\right] \\ \mathrm{N}(0,1) \end{gathered}$ | $\begin{gathered} \mathrm{N}(1,1) \mathrm{I}\left[\alpha_{j}>0\right] \\ \mathrm{N}(0,1) \end{gathered}$ | $\begin{gathered} \mathrm{N}(1,1) \mathrm{I}\left[\alpha_{j}>0\right] \\ \mathrm{N}(0,1) \end{gathered}$ |
|  | $\mu_{\theta}$ | $\begin{aligned} & \mu_{\theta_{i 1}} \\ & \mu_{\theta_{i 2}} \\ & \mu_{\theta_{i 3}} \end{aligned}$ | $\begin{gathered} 0 \\ \mathrm{~N}(0,1) \\ \mathrm{N}(0,1) \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ \mathrm{~N}(0,1) \\ \mathrm{N}(0,1) \\ \hline \end{gathered}$ |  |
|  | $\Sigma_{\theta}$ | $\sigma$ <br> $\rho$ <br> $L_{i i}$ <br> $L_{i j}[i>j]$ | $\begin{gathered} 1 \\ \mathrm{U}(-1,1) \end{gathered}$ | $\begin{gathered} \operatorname{Gamma}(1,1) \\ \mathrm{N}(0,1) \\ \hline \end{gathered}$ | - |
|  |  | $\gamma_{i}^{(0)}$ | - | - | $\mathrm{N}(0,1)$ |
|  | $\gamma_{i}^{(1)}$ | $\begin{aligned} & \mu_{\gamma_{i}^{(1)}} \\ & \tau_{\alpha_{(1)}} \end{aligned}$ | - | - | $\begin{gathered} \mathrm{N}(0,1) \\ \operatorname{Gamma}(1,1) \end{gathered}$ |

Summary of DIC criterion

| Model | DIC | $\mathrm{Q}_{\mathbf{0 . 0 2 5}}$ | $\mathrm{Q}_{\mathbf{0 . 9 7 5}}$ |
| :--- | :---: | :---: | :---: |
| AR(1) Covariance Structure | 2312.46 | 2205.88 | 2418.96 |
| Unstructured Covariance | 2242.62 | 2124.69 | 2359.80 |
| Random Effects | 2337.56 | 2258.15 | 2415.93 |

## Estimation Results - AR(1)

Summary of $\rho$ estimate

Introduction
Data
Description
Exploratory
Analysis
Results

## MIRT

Causality Analysis
Conclusions and Future Work

| Factor | $\bar{\rho}_{f}$ | $\mathrm{Q}_{0.025}$ | $\mathrm{Q}_{0.975}$ |
| :--- | :---: | :---: | :---: |
| Non Verbal FB | 0.44 | 0.22 | 0.63 |
| Pretense, Desire, Think | 0.65 | 0.43 | 0.83 |
| Verbal FB | 0.37 | 0.00 | 0.74 |
| Deceptive Box | 0.47 | 0.08 | 0.84 |
| Narrative | 0.06 | -0.86 | 0.88 |
| Location Change | 0.62 | -0.16 | 0.98 |



## Lancaster University

Introduction
Data
Description
Exploratory
Analysis
Results
MIRT
Causality Analysis
Conclusions and Future Work

## Estimation Results - AR(1)



- Non Verbal FB $=$ Pretense, Desire, Think - Verbal FB $=$ Deceptive Box - Narrative - Location Change

Estimated Latent Ability by subject

## Second Stage: Ability Regression

Regression of the latent ability factors of $t=2,3$ against the latent ability of the previous instant of times.


Path Diagram of Causality - Model AR(1).
The p-values have not been adjusted for multiple comparison.

## Conclusions

(1) Children before 4 years old successfully passed Pretense, Desire and NVFB tasks.
(2) ToM reduced to 6 latent abilities through the Bifactor Model.
(3) Easy items: Pretense and Desire. Most difficult item: Standard Location Change.
(4) Significant improvement across time: NVFB ability.
(5) Causal analysis: Pretense, Desire and Think affects the development of most of the others abilities.

## Future Work

- Consider the correlation between latent abilities in the model.
- Include a guessing parameter for each item.
- Covariates (age, sex and institution) could be included.
- Multilevel Modelling or Dynamic Latent Trait Models.


## Introduction

Data
Description
Exploratory Analysis

Results
Conclusions and Future Work


