

Longitudinal Multidimensional Item Response Modelling in Preschool Children's Mental State Understanding

MSc. Vilma Susana Romero Romero

VI Congreso Bayesiano de América Latina

4日 > 4日 > 4日 > 4日 >

Data Description

Explorator Analysis

Results

Conclusions and Future Work

Theory of Mind (ToM)

Definition

Ability to perceive our own mental states as well as from others, such as beliefs, desires and intentions and know that they differ from one person to another.

Main Features

- Developed in the first years of life (4 years old).
- Understand social environment and how to interact in it.
- Mental state tasks to identify the acquisition of ToM.

Let's take a look:

Aim

Understanding of mental states in children over the 3rd year of life through MIRT and analyze each dimension under the Bayesian Longitudinal approach.

Data Description

Explorato Analysis

Results

Conclusions and Future Work

Data Description

Participants

86 British children (Female = 41, Male = 45) from different preschools and day nurseries located in Northern Lancashire. Age: Between 30 and 33 months when recruited.

Measures

8 mental state tasks (13 questions three times in intervals of 4 months). A correct response scored '1' and an incorrect response scored '0'.

- Standard Location Change
- Deceptive Box
- Pretence, Desire and Think
- Narrative
- Verbal and Non-Verbal (2 and 4 trials repectively)

Description

Exploratory Analysis

Results

Exploratory Analysis

Response Patterns

- Only complete observations taken into account.
- Most difficult tasks: Standard Location Change and Deceptive Box.

Total Performance Trend

General trend is increasing

Lancaster University

Description

Exploratory Analysis

Results

Correlation Analysis

- Time 1 and 2 (Above) Time 3 (Below)
- Correlation across time.
- Correlation between possible latent factors.

Data Description

Explorator Analysis

Result

MIRT Causality Analy

Conclusions and Future Work

Multidimensional Item Response Modeling

The probability of answering a dichotomous item correctly is:

$$\Phi(x_{ij} = 1 | \theta_i, \alpha_j, d_j) = \frac{1}{1 + exp[-D(\alpha_j^T \theta_i + d_j)]}$$

Where, i=1,...,N participants, j=1,...,n test items, m latent factors $\theta_i=(\theta_{i1},...,\theta_{im})$ with associated item slopes $\alpha_j=(\alpha_1,...,\alpha_m)$, d_j is the item intercept and D is a scaling adjustment (usually 1.702).

- The slopes are the multidimensional discrimination parameters (one for each latent factor).
- The intercept is proportional to the item difficulty.
- The higher (lower) the discrimination parameter, the (worst) better the item distinguishes low and high ability levels.

Data

Description

Exploratory Analysis

Results

MIRT

Causality Analysis

Conclusions and Future Work

MIRT as Item Factor Analysis

Data Description

Explorator Analysis

Results

Causality Analysis

Conclusions

Conclusions and Future Work

Causality Analysis First Stage: Bayesian Longitudinal Analysis

- Correlation Structure: Latent abilities on the same subject will be more correlated than among different subjects.
 - Autoregressive AR(1)
 - Constant variance across time.
 - Correlation exponential decrease as the lag between times increases.

$$\mathbf{\Sigma}_{\theta} = \sigma^2 \left(\begin{array}{ccc} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{array} \right)$$

- **2** Unstructured Covariance: Not specific pattern
- **3** Random Effects: $\theta_{ift} = \gamma_{if}^{(0)} + \gamma_{if}^{(1)} t$
- 3 chains of 10000 iterations with a burn-in phase of 5000 and final results pooled in a single chain.
- Employment of a BUGS (Bayesian inference Using Gibbs Sampling) code called from the free software R.

Data Description

Exploratory Analysis

Results

MIRT Causality Analysis

Conclusions and Future Work

Prior Distributions

Choice of prior distributions for each f latent dimension

Parameters			AR(1)	Unstructured	Random Effects
Discrimination α_j		α_j	$N(1,1) I[\alpha_j > 0]$	$N(1,1) I[\alpha_j > 0]$	$N(1,1) I[\alpha_j > 0]$
Difficulty		d_j	N(0, 1)	N(0, 1)	N(0, 1)
	$oldsymbol{\mu}_{ heta}$	$\mu_{\theta_{i1}}$	0	0	-
	$\mu_{\theta_{i2}}$		N(0, 1)	N(0, 1)	-
(θ_i)		$\mu_{\theta_{i3}}$	N(0, 1)	N(0, 1)	-
ty	$\Sigma_{ heta}$	σ	1	-	-
bili		ρ	U(-1,1)	-	-
A		L_{ii}	-	Gamma(1, 1)	-
ent		L_{ij} $[i>j]$	-	N(0, 1)	-
Latent Ability (θ_i)		$\begin{array}{c c} L_{ij} & [i>j] \\ \hline \gamma_i^{(0)} \end{array}$	-	-	N(0, 1)
	$\gamma_i^{(1)}$	$\mu_{\gamma_i^{(1)}}$	-	-	N(0, 1)
		$\tau_{\gamma_i^{(1)}}$	-	-	Gamma(1, 1)

Summary of DIC criterion

Model	DIC	$Q_{0.025}$	Q _{0.975}
AR(1) Covariance Structure	2312.46	2205.88	2418.96
Unstructured Covariance	2242.62	2124.69	2359.80
Random Effects	2337.56	2258.15	2415.93

Description

Exploratory

Analysis

Results MIRT

Causality Analysis

Conclusions and Future Work

Estimation Results - AR(1)

Summary of ρ estimate

Factor	$\bar{\rho}_f$	$Q_{0.025}$	$Q_{0.975}$
Non Verbal FB	0.44	0.22	0.63
Pretense, Desire, Think	0.65	0.43	0.83
Verbal FB	0.37	0.00	0.74
Deceptive Box	0.47	0.08	0.84
Narrative	0.06	-0.86	0.88
Location Change	0.69	-0.16	0.98

Credibility Interval of Item parameters

Data Description

Exploratory

Analysis

Results

Causality Analysis

Conclusions and Future Work

Estimation Results - AR(1)

Estimated Latent Ability by subject

Description

Analysis

Causality Analysis

Conclusions Work

Second Stage: Ability Regression

Regression of the latent ability factors of t = 2,3 against the latent ability of the previous instant of times.

Path Diagram of Causality - Model AR(1).

The p-values have not been adjusted for multiple comparison.

Data Description

Explorator Analysis

Results

Conclusions and Future Work

Conclusions

- Children before 4 years old successfully passed Pretense, Desire and NVFB tasks.
- 2 ToM reduced to 6 latent abilities through the Bifactor Model.
- **3** Easy items: Pretense and Desire.

Most difficult item: Standard Location Change.

- 4 Significant improvement across time: NVFB ability.
- Causal analysis: Pretense, Desire and Think affects the development of most of the others abilities.

Future Work

- Consider the correlation between latent abilities in the model.
- Include a guessing parameter for each item.
- Covariates (age, sex and institution) could be included.
- Multilevel Modelling or Dynamic Latent Trait Models.

Data Description

Exploratory

Analysis

Results

Conclusions and Future Work

Thank you!!!

